تم تحميل ورفع المادة على منصة

للعودة الى الهوقع اكتب في بحث جوجل

ت: ۱۹۱۲۳۳۱۱۹۱۲

بسم الله الرحمن الرحيم مطبوعات ابو امل بدوي ورقــة عمـــل نهائيــــة

في مادة الرياضيات تالت متوسط د. ١٩٠٩١٨٤٠٠٨ - زين: ١٩٠٩١٨٤٠٠٨

السؤال الأول:

ضع علامة $(\sqrt{})$ أمام العبارة الصحيحة وعلامة (\times) أمام العبارة الخاطئة:

$$(\sqrt{})$$
 العدد البياني من لو $1., ... = 3$.

$$(\sqrt{)} \qquad (\sqrt{Y} - \sqrt{Q}) = 12 + \sqrt{Q} - \sqrt{Q}$$

(×)
$$2m^{7} - 9 = (7m + 7)(7m + 7)$$
.

(×)
$$(17 + \omega^{2} - 2\omega) (\omega^{3} - 2\omega) = 72 - \omega (2\omega)$$

(
$$\sqrt{}$$
) $(\sqrt{} + \omega + 1)$.

(×) الحد المطلق في المعادلة
$$m^{\gamma} - 7m - 17 = med$$
 هو 17 .

$$(\sqrt{})$$
 النقطة (\cdot,\cdot) تسمى نقطة الأصل ($\sqrt{}$

$$(\sqrt{})$$
 1۲ س + ۱۳ لیس مربعاً کامللاً.

$$(\sqrt{})$$
 ۱) الصورة العامة لمعادلة الدرجة الثانية هي أس $+$ + ب س $+$ ج $=$ ،

$$(\times) \qquad \qquad \frac{1}{\sqrt{1+\frac{1}{2}}} = \frac{1}{2} \times 10^{-1} = \frac{1}{2} \times 10^{-$$

$$(\sqrt{})$$
 ($\sqrt{}$) $(\sqrt{})$ (۱۹ $(\sqrt{})$) $(\sqrt{})$

(
$$\sqrt{}$$
) اللوغريتم العشري (المعتاد) أساسه \cdot ١.

٢١) إذا كان مت: صه ← صرعرف بالقانون ت (س) = س + ١ فإن التطبيق تقابل.

$$(\sqrt{})$$

$$\frac{1}{\omega^{\circ}} = \frac{1}{\omega}$$
 (۷۳) س- ω

$$\frac{-\frac{r}{r}}{r} = \frac{r}{r} \left(\frac{-\frac{r}{r}}{r} \right) \left(r \in \frac{r}{r} \right)$$

$$(\sqrt{)} = \sqrt[r]{r} = \sqrt[r]{r} (\sqrt{r})$$

(2)

ت: ۱۹۱۲۳۳۱۱۹۱۲

أ/ هيثم إدريس عبدالرحمن (أبو أمل بدوي)

(×)	٢٧) القوس جزء من مساحة الدائرة.	
(×)	٢٨) في الرباعي الدائري كل زاويتين متقابلتين متساويتان.	
(√)	٢٩) الزاوية المحيطية المنشأة على قطر الدائرة قائم	
()	٣٠ (س - ٥) (س + ٥) = س٢ – ٢٥٥	
()	$\Lambda - ^{7}$ س $= (٤ + س + ^{7}) (س - ^{7}) (٣١)$	
()	٣٢) أي تطبيق يحتوي على مجموعتين وقاعدة اقتران.	
	السؤال الثاني: ضع دائرة حول حرف الإجابة الصحيحة:	
	(۱) ۸س" × ص" =	
(۲س ص۲) (۱	أ) ٢٣ (س ص) ^٢ ب) ٥ (س ص) ٢٣ أ	
	(۲) إذا كانت:طُ \rightarrow طُمعرفة بالقاعدة $(w) = w - 1$ فإن v :	
د) تقابل	أ) لا تمثل تطبيقاً ب) تطبيق شامل ج) تطبيق متباين	
	(٣) الزوايا المحيطة المرسومة على قطر الدائرة	
د) مستقیمة	أ) حادة ب) منفرجة ج) قائمة	
	(٤) النقطة (٠٠ ٢٥) تقع	
د) الربع الثاني	أ) على محور س ب على محور ص ج) الربع الأول	
	(٥) المقدارمربعاً كاملاً:	
د) ځپ^	رن (خ بن + بار (ن باب الناس) ۱۸ خن ال	

ت: ۱۹۱۲۳۳۱۹۱۲

	امل س =	٢س + ٣ = ٠ مع	(٦) من المعادلة س٢ ـ
۲ (ع	٣- (ج	۲ (ب	Y - (1)
ا المطلق	رجة الثانية فإن حده	جذراً المعادل من الدر	(۷) إذا كان ٥، ٣ هما ج
۷ (۵	٥- (ح	10	۱) ۲
إن الجذر الأخر:	ں ـ ۸ = ۰ هو ۲ ف	لمعادلة س٢ + ب س	(٨) إذا كان أحد جذري ا
د) - ۲۱	ج) ۱٦	٤ - (ب	ا) ٤ (أ
ه فإن قيمى ب هي:	· ج = · هما - ٢ ، ٠	بلة س۲ + ب س +	(٩) إذا كان جذراً المعا
۷۰- (۵	۱۰(ح	ب) ۲	<u> </u>
صل جمع الجذرين هما:	، + ۱۸ فإن حاد	ادلة س ^۲ = ٣س	(١٠) بدون حل المع
	100		
د) ۱۸-	1A (E	٣	٣- (١
١ ٢، ٩ فإن قيمة م =) س + ٣م = · هو	ادلة س ^۲ + (ن + ۱	(١١) إذا كان جذرا المع
9 (2	۸ (ج	۷ (ب	۲. <u>(۱</u>
سمى:	ين من نقاط الدائرة ت	التي تصل بين نقطة	(١٢) القطعة المستقيمة
د) الوتر	ج) القطر	ب) القاطع	أ) نصف القطر
	ة تسمى زاوية:	ها على محيط الدائرة	(۱۳) الزاوية التي رأسم
يح د)كل من أو ب خطأ	ج) كل أو بصح	ب محيطية	أ) مركزية
أة معها على نفس القوس <u>.</u>	اوية المحيطية المنش	تساوي الز	(۱٤) الزاوية المركزية
د) ربع	ج) ثلث	ب) ضعف	أ) نصف
ت: ۱۹۱۲۳۳۱۹۱۲	(4)	أهل بدوي)	أ/ ميثم إدريس عبدالرحمن (أبو

	ة من ناحية واحدة:	المنشأ على وتر الدائر	(١٥) الزوايا المحيطية
د) كل ما ذكر خطأ	ج)متساوية	ب) متكاملة	أ) متتامة
	و ١ فأن التطبيق:	، ك بحيث د(س) = س	(۱٦) إذا كان د : ط ــ
د) شامل و غیر متباین	ج) تقابل	ب متباین	أ) شامل
	=	(س ^۲ – ۳س + ۹) (۳	(۱۷) مفکوك (س + ۳
د) س" — ٣	ج) س" + ٣	۲۷ + ۳۷ (پ	أ) س" _ ۲۷
	بإن (أ - ب)٢ =	۲) = ۱۰ ، أب = ٥ ف	(۱۸) إذا كان (۲۱ + ب
د) صفر	۲ (ح	ب) ه	10 (1
	0		(۱۹) نسو ۹ =
1.(2)	١- (ق	ب) ۹	أ) صفر
	13.		(۲۰) لـــو ۱ =
1- (2	٠ (ح	ب صفر	1 (1
60/2		ص = ٣ فإن س =	(۲۱) إذا كان ٢س +
د) ۲ - ص	ج) ص – ٣	<u>۳ – ص</u>	$\frac{m-\omega}{\gamma}$ (1)
		=	$= \frac{\pi_1 \cdot \times \pi_1}{\pi_1} (YY)$
, (7	ح) ۰۰۰۰	١.٠٠	١٠ (١
		=	(۲۳)
°(' ') (2	ج) ٢س°	ب) (۲ س)^	<u>(۱) (۲س)</u>
ت: ۱۹۱۲۳۳۱۹۱۲	(!	و أهل بحوي) (5)	أ/ هيثم إدريس عبدالرحون (أب

(۲٤) مقابل ٣ للأساس ٢ يساوي:

(٥٠) اللوغريتم إذا كان المقابل للأساس ٧ هو ٧ يساوي

(٢٦) العلاقة الأسية ٢١٠ = ١٠٠ في صورة لوغريتمية هي:

(۲۷) العلاقة اللوغريتمية $Y = Le^{9^2}$ في صورة أسية هي:

$$Y = {}^{\vee}\xi \cdot \theta \quad (2) \qquad Y = {}^{\vee}\xi \cdot \theta \quad (3) \qquad (5) \qquad (6) \qquad (6) \qquad (7) \qquad (7)$$

السؤال الثالث: (أ) بسط ما يلي:

7
 مکعب $w_{m} = (w_{m} + w_{m})^{7} = w^{7}$

٤) (سن°) = سِ∵

۲) ۱۶ س ن ÷ ۷س = ۲س۳

ت: ۱۹۱۲۳۳۱۱۹۱۲

$$(1) = \frac{7}{1} = 777 = 777 = 73.$$

(ج) أكم<u>ل:</u>

(۱) نسو
$$^{m} = ^{m} = ^{m}$$
 فإن $^{m} = ^{m} = ^{m} = ^{m}$ اإذا كان نسو $^{m} = ^{m} =$

٣) إذا كان لسو ٧٨ = ١,٨٩٢ فإن:

(د) على المستوى الديكارتي أدناه جد:

١) إحداثيات النقاط:

$$(\underline{\Upsilon}, \underline{\Upsilon}) = \underline{\Lambda}, (\underline{\Upsilon}, \underline{\Upsilon}) = \underline{\Lambda}$$

$$\mathbf{b} = (7, -7) \ \mathbf{c} = (-7, -7)$$

٢) عين النقاط:

$$\{(\underline{Y},\underline{Y})\}$$
 المستقیمان $\{(\underline{Y},\underline{Y})\}$ یتقاطعان عند $\{(\underline{Y},\underline{Y})\}$ ی م الحل =

٤) المستقيم ل، يقطع المحور السيني عند (١٠،٠) ويقطع المحور الصادي عند (١،٠)

۲. لــو ۲,۷ = ۲۹۸,۰

٤. لــو ٧٨٠ = ٢,٨٩٢

(هـ) النقطة (- ٩، - ٦) تبعد عن المحور السيني ٦ وحدة وتبعد عن المحور الصادي ٩ وحدة.

(و) أ: (٣، ٥) ، ب (٣، -٢) تمثيلهما خطيوازي المحور الصادي.

بينما (٤، ٣)، (١، ٣) تمثيلهما يوازي المحور السيني.

(ز) جد مجموعة حل المعادلات الآتية: (س، ص ∈ ح)			
۲) س + ۳ص = ۲ ← (۱)	۱) ٣س + ص = ٥ → (١)		
س ـ ص = ۲ → (۲)	٢س – ص = ٠ → (٢)		
م الحل: {(۲،۲)}	م الحل: {(۲،۱)}		
(٤) زاویتان منتتامتان، قیاس أحدهما یزید عن	(۳) ص = س + ۱ ، س = ۲ص – ٥		
الأخر بمقدار ٢٠ جد الزاويتين:			
نفرض الزاوية الأولى:			
نفرض الزاوية الثانية: المعادلتان هما:			
المعادنتان همــــــــــــــــــــــــــــــــــــ			
الزاوية الأولى = ٥٥ °			
الزاوية الثانية = ٣٥ °	م الحل = {(۳، ٤)}		

		حل المعادلات (∈ ص)	(ح) جد مجموعة
• =	۲) س۲ + س – ۱۲	· = (£	۱) (س – ۹) (س +
م الحل = {٣، - ٤}		م الحل = {٩، -٤}	
	٤) س ٢ = ٥٢	6.0	۳) س ۲ – ۳س (۳
•••••			
•••••	<u> </u>		
م الحل = {٥، -٥}		م الحل = {٠٠ ٣}	
	101	ر لدرجة الثانية التي جذراها	اط/ کون معادلة ا
			(=)
۲-،		۲،0_	
$\cdot = 7 + 0m + 7 = 0$		المعادلة: س٢ + ٣س ـ ١٠ = ٠	

حاصل ضرب الجذرين = ٦ حاصل جمع الجذرين = ٥

(ي) إذا كان أحد جذري المعادلة س 1 + س + ج = ۰ هو ٦ جد:

الجذر الآخر:الجذر الأخر:

السوال الرابع:

$$\Sigma(\circ) = \Sigma + 1 \cdot = (\circ) \Sigma$$

$$Y \leq$$
س النا کان س $Y \leq$ د رس $Y =$ س $Y =$ س $Y =$ انا کان س $Y =$

$$Y = Y = W = (1 - 1) = W + Y = Y$$
 $(1 - 1) = W + Y = Y = Y$

وكان من : سر---> ص تطبيقاً معرفاً بالشكل المقابل أجب عن الآتي:

ت س	۲
1	•
۲	١
٦	£

(د) إذا كانت ص إ ١٠، ٢، ٣، ٥، ٦ وكانت : سر---> ص معرفاً كالآتي:

٨	0	٣	س ۲
4	٣	•	ص>=ت(س)

المجال المقال

$$\{(\xi,\xi),(\zeta,\zeta),(\zeta,\zeta),(\zeta,\zeta)\}$$

المجال ح

<u>(و) جد مفكوك:</u>

$$(w + 7) = m w^7 + 7 m$$

7
 (س + 2) (س - 0) = س 7 - 0 - 3 س + 2 س - 7 - 4

(ز) حلل تحليلاً كاملا:

$$(1 + \sqrt{m}) (0 + \sqrt{m}) = 1 \cdot + \sqrt{m} + \sqrt{m}$$

$$(7 - \omega) (7 - \omega) = 1 \wedge + \omega - 7) (\omega - 7)$$

$$(\xi - \omega) (\Upsilon + \omega) = \Lambda - \omega \Upsilon - \Upsilon \omega (\Upsilon - \xi)$$

$$(-1)^{2} - (-1)^{2} = (-1)^{2}$$

$$(a^{7} - b^{7}) = (a - b) (a^{7} + ab + b^{7})$$

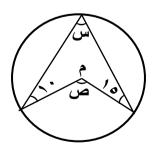
$$(17 + \omega^{5} + \omega^{5}) = (2\omega - \omega^{7}) = (3\omega^{7} + \omega^{7}) (4\omega^{7} + \omega^{7}) = (3\omega^{7} + \omega^{$$

$$(7 + w) (w - 1) = (1 - w) + (1 - w) = (1 - w) + (1 - w)$$

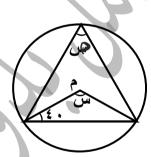
١٠) أكمل المقدار
$$س^{\gamma} = \gamma m + \dots$$
 يكون مربعاً كاملاً بإضافة $\frac{69}{3}$.

١١) أكمل المقدار س ٢ + + ٣٦ يكون مربعاً كاسسملاً بإضافة ١٢ س.

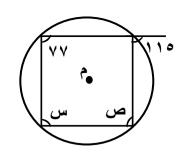
السؤال الخامس: أ) أكمل:

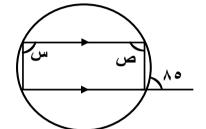

- ١) نصف قطر الدائرة هو القطعة المستقيمة التي تصل بين مركز الدائرة واي نقطة على الدائرة.
- ٢) الدائرة هي مجموعة من النقاط في المستوي التي تبعد عن نقطة ثابتة المركز بعدا ثانتا
 (نصف القطر).
- ٣) قطعة دائرية جرع من مساحة الدائرة محصورة بين وتر وقوس.
- ٤) القطاع الدائري جزء من مساحة الدائرة محصورة بين نصفي قطرين وقوس.
- ٥) المستقيم الذي يصل منتصف الوتر بمركز الدائرةيكون عمودياً على الوتر.

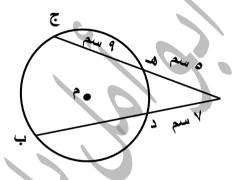
- ٦) المنصف العمودي لاي وتر في الدائسرة يمر بمركز الدائسرة.
- ٧) الزاوية المحيطية تساوي نصيف الزاوية المركزية المنشأة معها على القوس نفسة.
- الزوايا المحيطية المنشاة على قوس واحد متساوية.
- ٩) في الرباعي الدائري الزواية الخارجية تساوي الزاوية الداخلية المقابلة للمحاورة لها.
- ١٠) اذا كان مجموع الزاويتين المتقابلتين في الشكل الرباعي = ١٨٠ كان الشكل رباعي دائري.
- ١١) الزاوية المحصورة بين المماس ونصف قطر الدائرة الذي يمر بنقطة التماس زاوية قائمة.
- ١٢) العمود المقام على مماس الدائرة من نقطة التماس يمر بمركز الدائرة.
- ١٣) اذا رسم مماسان للدائرة من نقطة خارجها فان المماساين متساويان.
- ١٤) الزاوية المحصورة بين المماس لدائرة والوتر المأر بنقطة التماس تساوي الزاوية المحيطية المقابلي لهذا الوتر من الجهة الاخري.

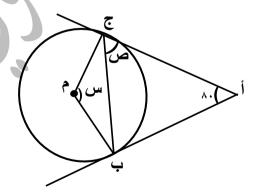

ب) جد قيمة س، ص:

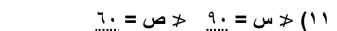

۱) لا س = ۷۰ ل م ص = ٥٥

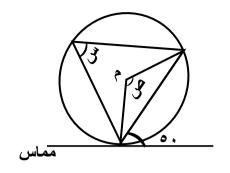

٣) لا س = ٢٥ ل لا ص = ٥٠

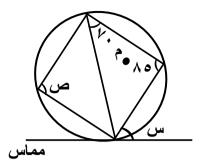

٧) لا س = ١٠٠ لا ص = ٥٠


٤) ﴿ س = ٤٠ ﴿ ص = ٢٠

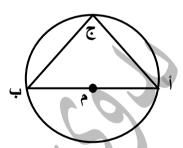



$$11 \lor = 0$$


$$\wedge \cdot =$$
 $\wedge \cdot =$ $\wedge \cdot =$



۱۲) لا س = ۱۰۰ لا ص = ۰۰



 $90 = \checkmark$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

- ٥١) لا س = ١٠ لا ص = ١٠
- ج) ١) برهن ان: (الزاوية المحيطية المنشأة علي قطر الدائرة قائمة)

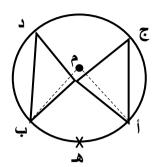
المعطيات في: دائرة مركزها (م) أب قطرج نقطة علي الدائرةالمطلوب اثباتة: خ أج ب = ٥٩٠

البرهان:

أب قطر (معطي)

ل أم ب = ١٨٠ (زاوية مستقيمة)

$$\star \checkmark \uparrow = \frac{1}{7} \checkmark \uparrow$$
 ام ب (نظریة)


$$9 \cdot = 1 \wedge \cdot \times \frac{1}{7} =$$

٢) برهن أن (الزاوية المحيطية المنشأة على قوس في جهة واحدة متساوية)

المعطيات: دائرة مركزها (م)

 \prec أ ج ب ، \prec أ د ب منشأتان على قوس أ هـ ب

العمل صل أم، بم

البرهان:

﴿ أ م ب = ٢ ﴿ أ ج ب (نظرية) (١)

من (١) و (٢)

﴿ أُم بِ = ﴿ أُد بِ #

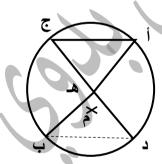
 $\overline{}$ برهن (اذا تقاطع اي وترين أب، ج د عند النقطة هـ داخل الدائرة فإن أ هـ \times هـ ب = ج هـ × هـ د)

المعطيات:

دائرة مركزها (م) الوتران أب ، جد يتقاطعان داخل الدائرة عند ه المطلوب اثباتة:

أهـ × هـ ب = ج هـ × هـ د

العمل: صل أج ، ب د


البرهان:

∆ ب هد، ∆ أجه

لا ب = لا ج (نظرية)

ت المثلثان متشابهات تستنتج أن $\frac{1}{6}$ = ج هـ $\frac{1}{6}$

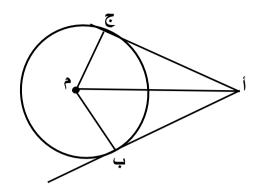
: أهـ × هـ ب = ج هـ × هـ د

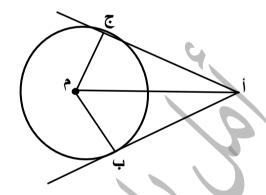
٤) برهن ان (اذا رسم مماسان للدائرة من نقطة خارجها فإن المماسين متساويان)

المعطيات:

$$\Delta$$
 أ ب م Δ أ ج م

المثلثان متطابقان لوجود (ق و ض) نستنتج أن أ
$$=$$
 أ $=$ $+$

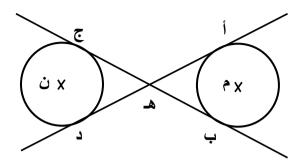

$$\#$$
نستنتج أن أ ب $=$ أ ج


٥) من الشكل برهن ان أب م ج رباعي دائري

المطلوب اثباتة:

أب م ج رباعي دائري

البرهان:



٦) من الشكل برهن أ د = ب ج

ه نقطة خارج الدائرة أه، ب ه مماسان

كذلك في الدائرة ن

بجمع ۱ + ۲

أ/ هيثم إدريس عبدالرحمن (أبو أمل بدوي)

ن: ۱۵،۳۳۱۱۹۱۲

ت: ۱۹۱۲۳۳۰۹۱